MBR膜、陶瓷膜、纳滤膜、反渗透膜污染及其控制(最全解析)

2024-10-14
MBR膜

MBR工艺处理城市污水和工业有机污水,由于其高效、节能、无相变、无二次污染、产出水水质好、占地少、自动化程度高等特点,在污水处理与资源化工程中得到了广泛的应用,并显示了广阔的发展前景。

一、MBR影响因素的控制

膜生物反应器工艺中,膜分离的操作条件类似于传统膜分离,主要控制因素有进水水质、膜面流速、温度、操作压力、pH 值、MLSS 等。

(1)温度

膜生物反应器系统宜在 15℃~35℃下运行。通常,温度上升,膜通量增大,这主要是因为温度升高后降低了活性污泥混合液的粘度,从而降低了渗透阻力。

(2)操作压力

在控制活性污泥混合液特性基本不变的情况下,膜通量随着压力的增加而增加;但当压力达到一定值,即浓差极化使膜表面溶质浓度达到极限浓度时,继续增大压力几乎不能提高膜通量,反而使膜污堵加剧。浸没式 MBR 的跨膜压差不宜超过 0.05MPa。

(3) 溶解氧

溶解氧是影响有机物去除效果的重要因素。特别是在以除磷脱氮为目的的情况下, 溶解氧的浓度控制显得尤为重要。在不同的膜生物反应器工艺类型中,混合液以各种形式在生物反应池内形成好氧、缺氧及厌氧段。反应池各段 DO 的控制范围为:厌氧段在 0.2mg/L 以下,缺氧段在0.2mg/L~0.5mg/L 之间,好氧段溶解氧浓度宜不小于 2mg/L。

(4)膜面流速

膜面流速与压力对膜通量的影响是相互关联的。压力较低时膜面流速对膜通量影响不大,压力较高时膜面流速对膜通量影响很大。随着膜面流速的增加,膜通量也增加,尤其是当压力比较高的时候。这是因为膜面流速的提高一方面可以增加水流的剪切力,减少污染物在膜表面的沉积;另一方面,流速增大可以提高对流传质系数,减少边界层的厚度,减小浓差极化的影响。

另外,膜面流速对膜面沉积层的影响程度还与料液中污泥浓度有关,在污泥浓度较低时,膜渗透速率与膜面流速呈线性增加。但当污泥浓度较高时,膜面流速增加到一定的数值后,对沉积层的影响减弱,膜通量增加的速度减小。对于外置式 MBR,运行条件尽可能控制在低压、高流速,膜面流速宜保持在 3m/s~5m/s。这样做不仅有利于保持较高的水通量,而且有利于膜的保养和维护,减少膜的清洗和更换。

(5)MLSS

浸没式 MBR 好氧区(池)污泥浓度宜控制在 3000mg/L~20000mg/L。一般来说,在一定的膜面流速下,当料液中污泥浓度增加时,由于污泥浓度过高,污泥易在膜表面沉积形成厚的污泥层,导致过滤阻力增加,使膜通量下降。但是,料液中污泥浓度也不能太低,否则污染物质降解速率低,同时活性污泥对溶解性有机物的吸附和降解能力减弱,使得混合液上清液中溶解性有机物浓度增加,易被膜表面吸附,导致过滤阻力增加,膜通量下降。因此,应当维持料液中适中的污泥浓度,过高或过低都会使水通量减小。

(6)pH 值

膜生物反应池进水 pH 值宜为 6~9。

二、MBR生化过程控制

进水水温低于 8℃时,活性污泥的活性受到一定的影响,此时要适当降低出水量,保证污水中有机物在反应池内得到充分的降解,从而确保出水水质,减缓膜堵塞。

在气温发生突变的季节中尤其要注意观察出水水质,如出水水质有突变时,要减少适当出水量、增加曝气时间。

正常运行时,应极力避免对微生物新陈代谢有抑制作用的消毒液、消毒剂混入生物反应池中。防止设备中微生物的正常生物机理受到破坏,导致出水恶化。

当污水中含有大量的合成洗涤剂或其他起泡物质时,膜生物反应池会出现大量泡沫,此时可采取喷水的方法解决,但不要向反应池内加入含有油性物质的消泡剂来去除泡沫。也不可使用硅胶系列消泡剂。硅胶系列消泡剂被吸附到膜表面,会加快膜间差压的上升,使膜堵塞。此时,即使用药液清洗也很难恢复压差,需要更换膜。

MBR法工艺系统应定期排放一定量的剩余污泥。排泥量可根据污泥沉降比、混合液污泥浓度、活性污泥的有机负荷或污泥龄来确定。

三、MBR膜污染与清洗的控制

膜污染是污水中的悬浮颗粒、胶体等在膜表面沉积,造成膜孔堵塞的现象。膜一旦与料液接触,污染即开始,由于溶质与膜之间相互作用产生吸附,开始改变膜特性。对于微滤膜,这一影响不十分明显,以溶质粒子的聚集与堵孔为主;而对于超滤,如膜材料选择不当,影响相当大,与初始纯水通量相比,可降低 20%~40%。尤其在低流速、高溶质浓度情况下,溶质在膜表面达到或超过饱和溶解度时,便有凝胶层形成,导致膜的透过量不依赖于所加压力,引起膜透过量的急剧降低,因此在此种状态下运行的膜,使用后必须清洗,以恢复其性能。

控制膜污染的措施有:

(1)对膜生物反应池系统进水进行预处理,去除其中的粗大颗粒;

(2)选择合适的操作压力;

(3)缩短出水泵抽吸时间或延长停吸时间和增加曝气量均有利于减缓膜污染。

对膜进行空气清洗可以除去表面杂质,孔中的杂质可用水反洗将其排出。水反洗是用过滤水从反洗罐中泵到抽水管中,根据膜种类的不同,一般每 10 分钟~24 小时反洗一次。

当水反洗无效果时,为了保持膜的良好性能,有必要使用化学清洗方法去除污染物。膜的化学清洗依据污染物的具体情况有所不同,使用的清洗药剂也不一样。化学清洗时,选择化学药品的原则一是不能与膜及其他组件材质发生任何化学反应,二是不能因为使用化学药品而引起二次污染。


陶瓷膜

陶瓷膜受到污染后,渗透通量会下降,通过清洗可以使陶瓷膜通量和分离性能得到恢复。近年来已提出了各种清洗方法清除陶瓷膜的污染,其中主要包括物理清洗、化学清洗、电清洗和超声波清洗等。

1. 陶瓷膜物理清洗法

物理清洗是指用人工或机械方法从陶瓷膜面上或膜孔内去除污染物,主要采用水或气体进行冲洗。常见的物理清洗方法通常有低压高流速清洗、反压清洗及这两者的联用。低压高流速清洗即在较低的操作压力下尽可能地加大膜面流速,该法使得溶质分子在膜面停留的几率降低。反压清洗即通过在陶瓷膜的透过液一侧施加压力,使透过液反向透过陶瓷膜。该法一方面可以冲掉墙塞在陶瓷膜孔内的污染物,另一方面对料液侧陶瓷膜表面的附着层也有着一定的冲洗作用。

2. 陶瓷膜化学清洗法

在实际运行中,对于污染严重的陶瓷膜,仅靠物理清洗很难使膜通量完全恢复,必须借助化学清洗。化学清洗方法有许多实际经验和技巧,通常因陶瓷膜表面所形成的附着层性质的不同,所采用的方法也千差万别。化学清洗剂的选择应根据陶瓷膜污染物的类型和污染程度,以及陶瓷膜的物理化学特性来进行,清洗剂可单独使用,也可复配使用。清洗剂中无机酸主要用来清除无机垢,使污染物中一部分不溶性物质转变为可溶性物质;碱主要是清除油脂、蛋白、藻类等生物污染、胶体污染及大多数的有机污染物;整合剂主要是与污染物中的无机离子络合生成溶解度大的物质,从而减少膜表面及孔内沉积的盐和吸附的无机污染物针对不同的料液也可将几种清洗剂适当复配作为专用清洗剂,或采取酸和碱交替清洗的清洗方法。对于不同种类的陶瓷膜污染,应对污染物进行分析,采用合适的药剂进行清洗。一般情况下,陶瓷膜污染是由多种污染共同造成的,采用单一的清洗方法,效果并不明显,在实际工作中,可以采用多种药液按顺序分别进行清洗。此外,在清洗过程中还应注意对清洗液的温度、pH值及清洗流量等清洗条件的控制。以表面活性剂、整合剂及烧碱为主的复合碱清洗剂在油田含油污水的陶瓷膜过滤试验中取得了较好的清洗效果。反向脉冲清洗等清洗工艺的采用,进一步增强了清洗效果,并消除了膜污染累积,较好地解决了陶瓷膜清洗问题。

3. 陶瓷膜电清洗法

电清洗就是在陶瓷膜上施加电场使带电粒子或分子沿电场方向移动,在一定时间间隔内施加电场且不用中断操作就可除去界面上的粒子或分子,也就是依靠电场减少浓度差极化,增加陶瓷膜通量。这种方法存在的缺点是需使用导电膜和安装有电极的特殊膜器

4. 陶瓷膜起声波清洗法

以上3种清洗方法都在一定程度上提高了陶瓷膜渗透通量,但是存在向系统引入新的污染物及破坏膜材料的可能性,另外运行与清洗之间的转换步骤较多。超声波清洗由于具有穿透膜组件和可被实时监测的潜在能力,越来越引起人们的研究兴趣。国外学者利用超声波清洗装置进行了陶瓷膜清洗,进行了较为系统的研究,主要是利用离线清洗试验装置进行清洗试验,陶瓷膜安装于用不锈钢制作的错流过滤装置中,制成膜过滤装置。该装置下面为浓缩液,上面为透过液,将它水平浸入装有水的超声波清洗槽中,以水作为传声介质,一般是将污染后的陶瓷膜组件放入超声波清洗装置进行清洗。国外学者还研究了使用超声波与其他清洗方法结合提高陶瓷膜通量、降低陶瓷膜污染的方法。超声波与物理(前冲洗)清洗方法结合,比超声波和前冲洗任何一种单独使用效果都好。用超声波与表面活性剂结合清洗牛奶废水污染的微滤陶瓷膜,结果表明两者结合比其中任何一种清洗方法都好,表面活性剂增加了超声波清洗的效果,两者在清洗过程中相互补充,使膜通量大大提高,使用阴离子表面活性剂(SDS)与超声波结合清洗进行浓度优化,得出η(SDS)的最优值为8mmol,在此条件下与超声波结合的清洗效率达到78%,利用错流装置在不同的操作条件下,对蛋白陈污染的超滤陶瓷膜和微滤陶资膜进行清洗,得出超声波结合水冲清洗是一种有效的清洗方法。

国内一些科研院所对超声波清洗陶瓷膜污染进行了相关研究,但是大多数研究的只是其中的一个或几个方面,还不够系统。有学者采用超声波与其他清洗方法相结合,对陶瓷膜生物反应器处理微污染源水的陶瓷膜污染及清洗进行了研究,发现超声波清洗对表面粘性较大的附着生长型MBR污染膜效果明显,与超声波结合的化学清洗优于常规清洗。

目前,有文献相继报道了一些其他的清洗方法,包括向系统中引入海绵球、机械振动、鼓气等,均在研究阶段取得了良好的清洗效果,但在实际应用中尚存在一定的问题。无论用哪种方法进行陶瓷膜清洗都会对陶瓷膜造成损害。因此,应该尽可能提高清洗质量,减少清洗次数;同时应及时对陶瓷膜进行清洗,降低清洗难度。

纳滤膜

一、纳滤膜在运行中的污染分析

(1)微生物污染

微生物包括细菌、藻类、真菌和病毒等。细菌的颗粒极小,一般为1~3μm,病毒则更小,约为0.2~0.01μm。微生物污染对纳滤膜系统至少造成两方面的不良后果:第一,微生物的大量繁殖和代谢,产生大量的的胶体物质,致使膜被堵塞造成膜通量急剧下降;第二,将造成产水中的细菌总数的增加。纳滤膜的微生物污染对整个装置的长周期运行极为不利,因此要对纳滤膜的微生物污染高度重视。

造成生物污染的原因一般有:

(1)进水中含有较高数量的微生物;

(2)系统的停用、保护、冲洗等没有严格按照技术手册要求进行;

(3)没有对进水进行杀菌或者杀菌剂投加量过小;

(4)进水水质含有容易滋生微生物的营养物质从而导致微生物的大量滋生;

(5)没有对管路进行定期的杀菌和消毒。受到微生物污染的膜表面会十分滑腻并常有难闻的气味,对生物膜样品进行焚烧的气味同焚烧头发一样。

例如进水的氨氮指标严重超浓度,导致管路中和膜元件内大量微生物滋生,对膜系统进行化学清洗后,由于没有对管路进行杀菌消毒,系统启运时,在管路中存留的大部分微生物颗粒随水流全部进入膜端,导致系统产水率严重下降,膜段间压降急剧上升,系统最终通过离线清洗得以消除污染。

(2)有机物及矿物油污染

由有机物造成的膜系统故障占全部系统故障的60%~80%。进水中的有机物吸附在膜元件表面,会造成通量的损失,尤其是在第一段,在很多情况下,在膜表面形成的吸附层对水中的溶解盐就像另一层分离阻挡层,堵塞膜面通道,导致脱盐率上升,大分子量并且带有疏水性基团的有机物常常会造成这种效应,例如微量的油滴、大分子量难降解的有机物等,会导致膜系统受到有机物污染。

例如石化废水成分复杂,水中有机物浓度较高,且含有微量油,因此在石化废水深度处理装置中使用的纳滤膜系统中,有机物污染是一种最常见的污染类型。对纳滤膜的有机物污染一般通过进水的油和有机污染物浓度分析即可判断一般的有机污染通过定期的化学清洗即可消除。

(3)絮凝剂引起的污染

在系统的预处理过程中,在浅层浮选处理单元,通过加入一定的高纯聚合铝絮凝剂,使水中的胶体、大颗粒杂质沉淀以及油类物质得以去除。絮凝剂的使用主要分为无机类和有机类,无机类一般为聚铁、聚铝,由于无机类絮凝剂价格便宜而使用较多,为了避免对膜系统的铁离子污染,一般的膜系统中都选用高纯聚铝作为絮凝剂;有机絮凝剂一般为聚丙烯酞胺、聚丙盐类的较多。在某些膜系统的预处理单元中,无机类和有机类絮凝剂一起配合使用效果较好,但在实际使用中,要根据系统工艺的不同,水质的不同,通过实际筛选决定使用絮凝剂的种类和浓度。在实际的运行中,并不是所有的絮凝剂都会被絮凝成粒,无论是哪一类的絮凝剂,都会在水中有一定的残留,进入后续处理单元后,正常情况下,残留的絮凝剂会随着浓水排掉,但是如果絮凝剂投加浓度过高,膜系统进水中的残留量过多,会在纳滤膜的表面进行二次絮凝沉淀,引起膜污染,并且因为絮凝剂投加量过高而引起的污染在清洗中一般难以去除,甚至可以会导致在短时间内就需要更换膜。

(4)结垢引起的污染

结垢是难溶性的盐类在膜表面析出固体沉淀,防止结垢的方法是保证难溶解性盐类不超过饱和界限。在纳滤系统中析出的垢主要是无机成分,以碳酸钙为主,除碳酸盐以外,很多其他的无机盐类同样具有较低的饱和溶解度,如硫酸钙、硫酸钡、硫酸镁及部分氢氧化物等。为了防止膜面结垢,一般在保安过滤器之前要加入适量的膜用阻垢剂,添加量一般控制在4~12mgl/L。

有时也会出现投加的不同药剂发生相互作用导致难溶物质析出,进而污染膜元件的事情。例如当聚合有机阻垢剂与多价阳离子如铝或残留的聚合阳离子絮凝剂相遇时,将会形成胶体沉淀,严重污染前端的膜元件,这类污堵很难清洗。因此在投加多种药剂时,应该注意这些药剂的成分,根据水质数据、反渗透设计方法和所选择的膜型号,通过试验确认它们的兼容性,并获得恰当的阻垢剂类型及投加剂量。

(5)胶体污染

胶体是具有1纳米(nm)到1微米(μm)粒径,像粘土一样很难自然降解的微粒子,在水中通常带负电。污水中的有机胶质类物质、过剩的絮凝剂加量、污水中的金属离子水解形成的氢氧化物胶体,是导致胶体污染的常见原因。废水中的常见胶体污染物有氢氧化铁、氢氧化铝、二氧化硅胶体等,

例如胶体污染可以是由于加药量过大、管路的腐蚀以及大分子量的有机物进入膜系统所导致的。

二、纳滤系统的长期运行经验

(1)保持预处理效果的稳定

在预处理阶段去除原水中的大部分污染物。良好的预处理效果,能够有效减少纳滤系统受到各类污染的几率

例如定期更换保安过滤器滤芯和检查保安过滤器,防止过滤器内出现短流现象和滋生生物粘泥而对膜元件造成污染;严格控制进水浊度和污染指标(SDI),控制进水浊度小于0.5NTU,污染指数小于5;对膜前流程及膜系统进行消毒杀菌,消毒杀菌对控制微生物污染是必不可少的关键步骤。对系统的杀菌分为冲击式杀菌和连续性杀菌,可根据系统不同而选用不同的方法。

(2)较低的运行压力和回收率

压力是纳滤脱盐的推动力,压力升高,膜组件透水量线性上升,脱盐率开始时升高,当压力升至一定值时,脱盐率趋于平稳。因而在实际运行中,压力无需太高,压力过高会使膜的衰减加剧,而且有可能损坏膜组件。为延长膜组件的使用寿命,通常在脱盐率和产水量满足生产要求时,采用稍低一些的压力运行,对系统的长周期运行有着极大的好处。

当纳滤系统采用较高的回收率时,浓水含盐量相应提高,不但容易在浓水侧产生浓差极化,而且会导致系统渗透压的增大,为维持产水量,操作压力必须提高,产水的比能耗也会增加,产水水质变差,膜污染加重,结垢和微生物污染的危险性变大。根据运行经验,纳滤系统的回收率控制在75%以下比较合适。

(3)对膜进行物理清洗(产品水冲洗)

冲洗是采用低压大流量的进水冲洗膜元件,冲洗掉附着在膜表面的污染物和堆积物,膜的低压冲洗可以减少深度差,防止膜脱水现象的发生。在条件允许的情况下,建议经常对系统进行冲洗。增加冲洗次数比进行一次化学清洗更有效果。

(4)规范系统启停操作及停运保护措施

系统启动和停止时,流量和压力会有波动。过大、过快的流量和压力波动可能会导致系统发生极限压降现象,形成水锤作用,从而导致膜元件破裂,故在进行启停止操作时需缓慢增加或者降低压力及流量。

系统的开机前和停运时,应确保压力容器内没有真空,否则当再次启运膜元件的瞬间会出现水锤或者水力冲击,当已经漏掉水分的系统在初始开机或一般运行启动时,就会出现上述现象。系统应保持较低的背压(产水侧压力),产水侧压力高于原水侧压力。0.05MPa以上时,膜元件会受到物理性损伤。系统启动和停止运行前,要充分确认阀门的开和关以及压力的变动,保证运行过程中杜绝背压现象发生。如果膜系统需要长时间停运,则需要根据技术手册要求,向系统内通入保护液或者定期通水来保证膜元件的正常备用。

(5)定期对膜元件进行在线化学清洗

采用了合理的预处理系统和良好的运行管理,它只能使膜元件受污染的程度有所降低,要完全消除膜的污染是不可能的。因此,纳滤膜系统运行一段时间后,将可能受到多种污染物的污染,尤其是使用在污水深度处理装置的纳滤膜系统,污染更是经常发生一般情况下,经过标准化后的产水量下降15%左右,进水和浓水之间的系统压降升高到初始值的1.5倍,产水水质有明显下降,就需要对膜元件进行化学清洗。

化学清洗时,首先要判断污染物种类,然后根据膜的特性选择合适的清洗配方和清洗工艺。清洗时要注意控制清洗液的pH值、温度和清洗液的流量。为了保证冲洗效果,具备条件的可以采用分段清洗的方法进行化学清洗。目前国内及国际已经有专业化生产的膜专用清洗药剂供选择使用。清洗效果可以通过比较清洗前后的装置的脱盐率、产水量和压降等性能来确认。

用于石化废水深度处理装置的膜系统,化学清洗一般先进行杀菌,然后进行碱洗,去除微生物污染、有机物污染和油污染,然后再进行酸洗,消除垢类污染及金属氢氧化物污染。清洗周期根据装置的实际运行情况进行确定。

(6)对膜元件进行离线化学清洗

当膜系统经过多次在线化学清洗后无法恢复性能,或者膜系统受到重度污染后,则需要对膜元件进行离线化学清洗,膜元件的重度污染是指污染后的单段压差大于系统投运初期单段压差值的2倍以上、反渗透系统产水量下降30%以上或者单支反渗透膜元件质量超过正常数值3kg以上的情况。

根据用户原水全分析报告、性能测试结果及所了解的系统信息判断污染类型及清洗流程;必要时再通过特殊的设备、器具作进一步的验证,以确定具体污染物类型,确定所需清洗配方。将拆下了待清洗膜元件在专用离线清洗设备上进行清洗,清洗后经过检测合格后回装投用。

反渗透膜

一、反渗透膜污染种类介绍

1、颗粒状污染:泥沙、前处理滤料细末等;

2、生物性污染:细菌、病毒、藻类等;

3、有机物污染:铁、铝氧化物等;

4、无机物污染:碳酸盐类垢、硫酸盐类垢、氟、硅垢等。

一种情况是洗后效果不明显,一种是洗后当时效果还可以,但运行不久即恢复到原来的水平上,究其原因:是因为药剂仅是将垢体松解,而未能溶解,因而用不了多长时间,又污堵了。例如:我们常见到反渗透装置一、二段压差明显升高,用一般方法清洗,几乎很难将压差降下来。其原因一般就是复合垢的缘故,可能是生物的尸体产生的胶体或蛋白质将小颗粒吸附,粘结于表面也可能是前处理、预处理的絮凝剂、阻垢剂添加过量而积存于隔网孔隙内,日久成垢,影响产水量和脱盐率。再者,也可能是系统设计中,浓差比选择偏小而使泥沙淤积在道道中而形成污染,还有其他一些异常情况也会造成一、二段压差的明显升高。

反渗透膜的压差升高,产水量减少,脱盐率下降,一般多为无机盐垢所致。根据水质,有单纯某一种如碳酸盐垢。而许多情况下,不仅只是一种,而是多种如碳酸盐、硫酸盐、硫酸盐垢有硫酸钙、硫酸银、硫酸钡还有硅垢,如冬天气温低或深井水温低,还可能复合硅垢。此外有些地区氟化物污垢也是有实例可证的。

综上所述,由于污染情况不同,用一种或简单的几种方法和药剂是不能很好地解决污染问题的。清洗膜元件需要讲究对症下药,如果采用了错误的清洗药剂和清洗方法,将导致难以挽救的损失。例如对于清洗碳酸盐类垢与硫酸盐类垢就截然不同,如果用反了,清洗过的膜就再也恢复不了原有性能指标,因此选择正确的清洗药剂和方法的前提是正确分析了解污垢的性质、种类和程度,这项工作非专业的清洗队伍是很难胜任的。


二、反渗透膜的清洗和维护

1、在以下情况下需要清洗膜

(1)标准化后盐的透过率增加10%-15%;

(2)标准化后透过液流量降低10%-15%;

(3)进水和浓水的压差较基准状况上升了15%,各段压力差增加了15%;

(4)作为日常维护,一般在正常运行3-6个月后;

(5)在正常给水压力下,产水量较正常值下降10~15%;

(6)产水水质降低10~15%,透盐率增加10~15%;

(7)给水压力增加10~15%;

(8)系统各段之间压差明显增加。

保持稳定的运行参数主要是指产水流量、产水背压、回收率、温度及TDS。如果这些运行参数起伏不定,建议检查是否有污染发生,或者在关键运行参数有变化的前提下反渗透的实际运行是否正常。

定时监测系统整体性能是确认膜元件是否已发生污染的基本方法。污染对膜元件的影响是渐进的,并且影响的程度取决于污染的性质。

已受污染的反渗透膜的清洗周期根据现场实际情况而定。正常的清洗周期是每3~12个月一次。

当膜元件仅仅是发生了轻度污染时,重要的是清洗膜元件。重度污染会因阻碍化学药剂深入渗透至污染层,影响清洗效果。

清洗何种污染物以及如何清洗要根据现场污染情况而进行。对于几种污染同时存在的复杂情况,清洗方法是采用低pH和高pH的清洗液交替清洗(应先低pH后高pH值清洗)。

三、反渗透膜清洗具体方法

反渗透膜的性能下降主要原因是由于膜表面受到了污染,如表面结垢、膜面堵塞;或是由膜本身的物理化学变化而引起的。物理变化主要是由于压实效应引起膜的透水率下降;化学变化主要是由于pH的波动而引起的,如使醋酸纤维素膜水解、游离氯也会使芳香聚酰胺膜性能恶化。

反渗透膜污染堵塞的主要原因是由于膜面沉积和微生物的滋长而引起的。其中微生物不仅堵塞膜,并对醋酸纤维素有侵蚀损害作用。因此,在膜内必须保持一定的余氯量,但是余氯太高,又会引起膜性能下降,故在醋酸纤维素膜前保持余氯0.1~0.5 mg/L,而在芳香聚酰胺膜前余氯要<0.1 mg/L。

反渗透膜的清洗处理是一个细致而又烦杂的工作,目前国产膜的质量还不够高,多次清洗膜易损坏。为了减轻清洗工作,要搞好预处理,把好水质关。

处理的方法是:定期用0.1%甲醛溶液或用质量浓度为100 mg/L的新洁尔灭消毒液循环清洗处理至少1 h。已经污染的膜要用2%柠檬酸铵溶液(pH为4~8)进行清洗,或用亚硫酸氢钠、六偏磷酸钠、稀盐酸等来防止锰、铁及碳酸盐的结垢。有时也用酶洗涤剂对有机物进行清洗。清洗压力控制在0.34~0.98 MPa,清洗流速为原来水处理流速的2~3倍。

四、反渗透膜保养方法

反渗透膜保养应该注意哪些?在反渗透膜系统运行过程中,污染和清洗始终是一个动态的平衡过程,每次清洗都保持最大限度的洁净度,才能让膜更高效运行。

运行一段时间以后,膜上吸附沉积了大量污染物需要被及时清除干净,以待下一次高效率的运行。如果每次清洗不到位就接着进行过滤,污染将会进一步的累积,累积到膜表面流道被堵死,清洗剂无法渗透进去的现象。同时由于长期带压力运行,污染物会发生密实现象,这都将导致膜的清洗恢复极其困难,最终导致膜的报废。

如果以前的膜没有进行有效率清洗,已经污染到极低通量,那一定是日积月累的结果,不要指望用一次某种高效的膜清洗剂就能把全部的污染物一次清除干净,好比生了一场大病,指望吃一次药就能立刻恢复健康,那是完全是不实际的。反渗透膜要经常定期清洗这样才能保证我们饮水的健康、安全。

一般出现产水量下降较多,产水水质、脱盐效果变差,系统各段之间压差变大等情况时,说明反渗透膜污染比较严重,需要清理了。一般使用的化学清洗液有柠檬酸、盐酸、亚硫酸氢钠等,针对不同的污染使用不同的溶液。工具就很简单,水箱、水泵、过滤器、最好再带压力表流量计。如果反渗透长时间不使用(3天往上),需用亚硫酸氢钠溶液注入反渗透膜组件,抑制微生物生长。

反渗透膜系统停运一周以上(环境温度在5℃以上):停运前,先对系统进行低压(0.2~0.4MPa),大流量(约等于系统的产水量)冲洗,时间为14~16分 钟;按照反渗透系统操作说明书中有关系统化学清洗的方法进行化学清洗;化学清洗完毕后,冲洗干净反渗透膜;配制0.5%的福尔马林溶液,低压输入系统内, 循环10分钟;关闭所有系统的阀门,进行封存;如系统停运10天以上,则每10天须更换一次福尔马林溶液。

反渗透膜系统短期内停运(1~3天):停运前,先对系统进行低压(0.2~0.4MPa),大流量(约等于系统的产水量)冲洗,时间为14~16分钟;保持平常的自然水流,让水流入浓水道。

环境温度在5℃以下:停运前,先对系统进行低压(0.2~0.4MPa),大流量(约等于系统的产水量)冲洗,时间为14~16分钟;在有条件的地方,可将环境温度升高到5℃以上,再进行反渗透膜系统保养。

分享